
Binary and Octal

Copyright © 2017 Bytellect LLC. All rights reserved. Page 1 of 5

Binary and Octal

Introduction
This document introduces the binary (base two) and octal (base eight) number systems as a

foundation for systems programming tasks and debugging. In this document, if the base of a number

might be ambiguous, we use a base subscript to indicate the base of the value. For example:

45310 is a base ten (decimal) value

11012 is a base two (binary) value

32178 is a base eight (octal) value

Why do we need binary?
The binary number system (also called the base two number system) is the native language of digital

computers. No matter how elegantly or naturally we might interact with today’s computers, phones,

and other smart devices, all instructions and data are ultimately stored and manipulated in the

computer as binary digits (also called bits, where a bit is either a 0 or a 1). CPUs (central processing

units) and storage devices can only deal with information in this form. In a computer system,

absolutely everything is represented as binary values, whether it’s a program you’re running, an

image you’re viewing, a video you’re watching, or a document you’re writing. Everything, including

text and images, is represented in binary.

In the “old days,” before computer programming languages were available, programmers had to use

sequences of binary digits to communicate directly with the computer. Today’s high level languages

attempt to shield us from having to deal with binary at all. However, there are a few reasons why it’s

important for programmers to understand the binary number system:

1. Debugging - Sometimes during the debugging process, we need to examine the contents of

memory. Knowledge of the binary number system helps us correctly interpret what we're

seeing, allowing us to make more informed decisions about what might be going wrong in our

code.

2. Systems Programming - When writing or reading software that deals directly with

controlling hardware (e.g., embedded systems, operating systems, device drivers, etc.), we are

often dealing with code that operates on data at the individual bit level.

3. Efficient Data Manipulation – An understanding of binary and how to manipulate data at

the bit level can allow us to write code that performs better and more logically. Without this

understanding, we might manipulate data in less-efficient or less-intuitive ways.

How decimal (base 10) works
Before diving head first into binary, it’s useful to first analyze the base ten (decimal) number system

that we use every day. This analysis will help us take the leap to binary in the next section.

The base ten number system provides us with ten available digits: 0 through 9. In base ten, we put

multiple digits together to represent whole numbers larger than 9, where each position in the

number is given a place value – some multiple of ten. For example, the decimal value 425 has a 5 in

the ones place, a 2 in the tens place, and a 4 in the hundreds place. We're using only the ten digits

that the decimal number system allows, but with those digits, we can express whole numbers that

https://www.bytellect.com/

Binary and Octal

Copyright © 2017 Bytellect LLC. All rights reserved. Page 2 of 5

are arbitrarily large; just put the appropriate digits into the appropriate places, and you have your

value.

Where do these place values come from? As children, we likely memorized them as the ones, tens,

hundreds, thousands, etc. They are all powers of ten:

Ones place 100 = 1

Tens place 101 = 10

Hundreds place 102 = 100

Thousands place 103 = 1000

and so on. So, our sample decimal number 425, when analyzed in terms of place values is:

 4 x 102 + 2 x 101 + 5 x 100

 4 x 100 + 2 x 10 + 5 x 1

 400 + 20 + 5

How binary (base 2) works
By contrast, the binary number system (base two) provides only two available digits to express

values: 0 and 1. In binary, we put multiple digits together to represent whole numbers larger than 1,

where each position in the number is given a place value – some multiple of two.

Where do these binary place values come from? Recall that place values in decimal (base 10) use

powers of ten. Similarly, place values in binary (base two) use powers of two:

Ones place 20 = 1

Twos place 21 = 210

Fours place 22 = 410

Eights place 23 = 810

and so on. For example, the binary value 1101 has a 1 in the ones place, a 0 in the twos place, a 1 in

the fours place, and a 1 in the eights place. We're using only the two digits that the binary number

system allows, but with those digits, we can express whole numbers that are arbitrarily large; just

put the appropriate digits into the appropriate places, and you have your value.

To convert our sample binary number 1101 into its equivalent decimal value, we analyze the binary

digits as follows:

 1 x 23 + 1 x 22 + 0 x 21 + 1 x 20

 1 x 8 + 1 x 4 + 0 x 2 + 1 x 1

 8 + 4 + 1

 1310

We can say, then, that:

11012 is equal to 1310

In the world of computers, it is convenient to refer to a sequence of eight bits as a byte. Storage space

is typically measured in terms of bytes (e.g., a hard disk might have a size of 500GB, or 500

gigabytes, which is 500 billion bytes). Historically, the term byte has not always meant eight bits.

But nowadays, the term byte is widely understood as meaning a sequence of eight bits. In many

computer architectures, a byte is the smallest addressable unit of storage.

https://www.bytellect.com/

Binary and Octal

Copyright © 2017 Bytellect LLC. All rights reserved. Page 3 of 5

How octal (base 8) works
While binary is indeed the number system used internally by computer systems for both data and

instructions, it can be very cumbersome and error-prone to deal with long sequences of binary digits.

In fact, many high-level languages don’t have a facility for handling binary values directly in source

code. To make dealing with such values somewhat easier for programmers, programmers typically

use a convenient "shorthand" for binary.

Two of these shorthand notations are the octal (base 8) number system and hexadecimal (base 16)

number system. Hexadecimal is actually used more often than octal today. Octal was more

commonly used in the early days of computing, when the binary widths of data values and memory

addresses were smaller. But both octal and hexadecimal are still in use. (For more information on

the hexadecimal number system, see the Binary and Hexadecimal document.) Octal is considered a

shorthand for binary because it allows us to express three binary digits using only one octal digit.

Recall that the decimal number system provides ten digits (0 through 9), and the binary number

system provides just two digits (0 and 1). The octal number system, provides eight digits (0 through

7).

What are the decimal values of octal digits? Octal digits have the same values as the first eight

decimal digits, 0 through 7, are thus very easy to remember. Here are the octal digits and their

equivalent decimal values:

Octal

Digit

Equivalent Decimal

Value

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

Just as in other number systems, in octal we place multiple digits together to represent whole

numbers larger than 7, where each position in the number is given a place value – in this case, some

multiple of eight.

Where do these octal place values come from? Recall that place values in decimal (base 10) use

powers of ten. Similarly, place values in octal use powers of 8:

Ones place 80 = 1

Eights place 81 = 810

64s place 82 = 6410

512s place 83 = 51210

and so on. Given an octal value of 6273, let’s see how these place values are used to arrive at the

equivalent decimal value (all values are decimal, unless otherwise noted). We use the exact same

technique we used to evaluate decimal and binary values. The only difference in octal is that we're

dealing with powers of 8:

 6 x 83 + 2 x 82 + 7 x 81 + 3 x 80

 6 x 512 + 2 x 64 + 7 x 8 + 3 x 1

https://www.bytellect.com/
https://www.bytellect.com/resources/binary-and-hexadecimal-bytellect001.pdf

Binary and Octal

Copyright © 2017 Bytellect LLC. All rights reserved. Page 4 of 5

 3072 + 128 + 56 + 3

 325910

This may all seem a bit cumbersome and esoteric, until we see how binary values can be expressed in

octal notation, and how we can easily convert back and forth between binary and octal. Using the

same octal value, 6273, let’s see what the equivalent binary value is:

 62738 is equivalent to 1100101110112

Clearly, octal is much more concise than binary. But why not just use the somewhat-more-concise

decimal number system that we already know and love? Certainly, decimal is more concise than

binary, since we can say 3259 in decimal instead of 110010111011 in binary. Unfortunately,

converting between decimal and octal requires the multiplication mess shown above. In contrast,

converting between binary and octal is far easier. Here are a few more examples to consider:

 1011111000011102 can be expressed as 574168

 0010101010101010102 can be expressed as 1252528

 0101000110011012 can be expressed as 243158

Effectively, every three binary digits (bits) of a binary value translate directly into an equivalent

single octal digit. Consider the following table that translates between octal digits and sequences of

three bits:

Octal

Digit

Equivalent Binary

Value

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Here's how to convert from a binary value to an octal value:

1. If the number of binary digits is not a multiple of three, fill in leading zeros on the left-most

end of the binary value to make the number of binary digits a multiple of three. This doesn't

alter the binary value at all, but makes the subsequent steps easier.

2. Now, consider a group of three binary digits, and using the table above, convert that group of

three bits into a single octal digit.

3. Repeat step 2 for each remaining group of three binary digits.

4. The resulting sequence of octal digits is the octal equivalent of the binary value.

To see how this works, let’s convert the number 11000110011012 into its octal equivalent. First, we

notice that the number of digits is not a multiple of three, so we fill in two leading zeros on the left,

to get 0011000110011012. This binary number has the same value as the original. Now, looking at

each group of three bits in turn, we convert each group into a single octal digit:

First group 0012 is equivalent to 18

Second group 1002 is equivalent to 48

Third group 0112 is equivalent to 38

Fourth group 0012 is equivalent to 18

Fifth group 1012 is equivalent to 58

https://www.bytellect.com/

Binary and Octal

Copyright © 2017 Bytellect LLC. All rights reserved. Page 5 of 5

Putting the octal digits together, we obtain the octal value 143158. Converting from octal to binary is

similarly straightforward. Going in this direction, we look at each octal digit and convert it into its

equivalent sequence of three binary digits:

First digit 18 is equivalent to 0012

Second digit 48 is equivalent to 1002

Third digit 38 is equivalent to 0112

Fourth digit 18 is equivalent to 0012

Fifth group 58 is equivalent to 1012

Putting all the groups of three binary digits together, we end up with 0011000110011012. At first,

we use the table to perform the conversion between an octal digit and its sequence of three bits. After

a while, we start recognizing the patterns and performing the conversions in our head – a task that

would be much more difficult if we had to convert between decimal values and binary values.

C Support for Octal
The C programming language does not directly support the expression of binary values, but it does

provide good support for octal values. To express an octal value in C, place a 0 immediately before

the sequence of octal digits, with no intervening spaces. Here are some examples of expressing octal

values in C:

0377 055347 037777735255 024315

027253370015 033653370015 027253337357 067545336

C also supports hexadecimal (base 16) values, using a prefix of 0x or 0X before a sequence of

hexadecimal digits. You can find out more about hexadecimal in Binary and Hexadecimal.

The printf library function (and related functions) supports printing integer values in octal and

hexadecimal. (Refer to The C printf Fact Sheet for details.) Likewise, the scanf library function

supports reading octal and hexadecimal values. (Refer to The C scanf Fact Sheet for details.)

Bytellect LLC provides professional training and consulting

services, including software training for developers and end

users, both online and onsite. Bytellect also designs and develops

custom software and firmware solutions for our clients. Visit our

web site at www.bytellect.com for more details and contact

information.

https://www.bytellect.com/
https://www.bytellect.com/resources/binary-and-hexadecimal-bytellect001.pdf
https://www.bytellect.com/resources/the-c-printf-fact-sheet-bytellect001.pdf
https://www.bytellect.com/resources/the-c-scanf-fact-sheet-bytellect001.pdf
https://www.bytellect.com/

