
Copyright © 2017 Bytellect LLC. All rights reserved. Page 1 of 6

Creating a C Library in Visual Studio 2017

This document provides step-by-step

instructions for creating a library in C using

Visual Studio 2017. A library is a .LIB file

containing a collection one or more object files.

When an application links to a library, the parts

of the library it uses become a part of that

application’s executable file. Thus, when several

applications link to a library, each gets its own

copy of object code used from the library.

Throughout this document, the term user refers

to another programmer making use of our

library.

Creating the Library Project
Here are the steps required to create a library in Visual Studio 2017.

1. On the File menu, click New | Project.

2. In the New Project window, in the left panel under Templates, select Visual C++ |

Windows Desktop.

3. In the center panel of the New Project window, click to select Windows Desktop

Wizard.

4. In the Name box, type the name of your new library project. If you want the solution

name to be different from the project name, type the solution name in the Solution

name box.

a. For example, if you want to create one solution that potentially contains multiple

libraries, you could name the project MyFirstLibrary and name the solution

MyLibraryCollection.

5. Click OK.

6. In the Windows Desktop Project window:

a. Under Application Type, select Static Library (.lib).

b. Under Additional Options, make sure all the boxes are unchecked.

c. Under Add common headers for, make sure all the boxes are unchecked.

d. Click OK.

7. In the Solution Explorer panel, you should see the library project (e.g.,

MyFirstLibrary) under the solution (e.g., MyLibraryCollection).

a. If you don’t see the Solution Explorer panel, then on the View menu, click

Solution Explorer.

b. You can confirm that your project is configured to generate a static library .LIB

file using the following steps:

https://www.bytellect.com/

Copyright © 2017 Bytellect LLC. All rights reserved. Page 2 of 6

i. Right-click the project name, and click Properties.

ii. In the left pane of the Property Pages window, navigate to

Configuration Properties | General.

iii. In the right pane of the Property Pages window, under Project

Default, you should see the Configuration Type set to Static library

(.lib).

At this point, you have a Visual Studio project that will build a library (.LIB file). The next

step involves adding source code to the library.

Adding a Header File to the Library
The users of your library will need a header file to include, containing the prototypes of

functions you’re making available, as well as any preprocessor symbols, typedefs, structs,

unions, etc. So, the first order of business after creating your library project is creating this

library’s header file. Although you can certainly have more than one header file in your

library, there should be just one header file that is designated for inclusion by users of your

library.

1. In Solution Explorer, find your library project, and under that project, right-click the

Header Files folder.

2. On the context menu, click Add | New Item….

3. In the left panel of the Add New Item window, click to select Visual C++.

4. In the center panel of the Add New Item window, click Header File (.h).

5. In the Name box, type the name of your new C header file, ensuring that it has the .H

file name extension.

6. Click Add. The new empty C header file will be opened in the code editor panel.

7. Although we’re currently only interested in allowing the library functions to be called

from C user code, it is best practice to allow C++ user code to call functions in our

library. Calling our library functions from C++ (or from other languages) requires that

our library function prototypes be declared as extern "C". This avoids C++ "name

mangling." As long as the user's code includes your supplied header file with the extern

"C" declaration, the compiler of the user code will be able to generate the correct call to

your library function. The easiest way to do this, especially if you have more than one

visible function in your library, is to surround your collection of function prototypes with

an extern "C" block:

 #ifdef __cplusplus

 extern "C" {

 #endif

 // All visible library function prototypes go here.

 #ifdef __cplusplus

 }

 #endif

https://www.bytellect.com/

Copyright © 2017 Bytellect LLC. All rights reserved. Page 3 of 6

Notice that the extern declaration/block opening and the block closing are both

surrounded by a preprocessor guard based on the definition of __cplusplus. This

predefined C++ macro (which begins with two underscores) is defined when using a C++

compiler, and is not defined when using a C compiler.

Adding a C Source File to the Library
1. In Solution Explorer, find your library project, and under that project, right-click the

Source Files folder.

2. On the context menu, click Add | New Item….

3. In the left panel of the Add New Item window, click to select Visual C++.

4. In the center panel of the Add New Item window, click C++ File (.cpp).

5. In the Name box, type the name of your new C source code file, and be sure to change

the default file extension from the .CPP extension to .C extension.

• Using the proper source file extension is very important. The .C file extension

will cause the compiler to use C syntax and semantics when compiling your code.

If you use the .CPP file extension, the compiler will use C++ syntax and

semantics.

• Keep in mind that you’re creating a library, so your library will not have its own

main function. Applications that link to your library will supply the program’s

main function.

6. Click Add. The new empty C source code file will be opened in the code editor panel.

7. Because your source file has the .C extension, you don’t need to surround your function

definitions with extern "C", because the C compiler will, by definition, not perform C++

name mangling. However, if your source file had a .CPP extension, then the C function

definitions would need to be placed within an extern "C" block:

 extern "C"

 {

 // All visible C library function prototypes go here.

 }

You can add as many source files as you wish to your library project. Be sure that any .C

source files which define and/or make use of the visible functions whose prototypes appear

in your .H file actually includes the .H file, so that you can use the compiler to ensure that

the header file and library implementation code are always in sync with each other. Users

of your library will be including your header file, so your library implementation code in

your .C files needs to do the same.

Building the Library
Building a library is the same as building an application through the Build menu. However,

if you're in the habit of running your applications to trigger a build, keep in mind that a

.LIB file is not an executable file. So, for example, if you click Debug | Start without

debugging, your library project will build, but you'll get an error message say that Visual

Studio can't start the .LIB file because it's not a valid application.

https://www.bytellect.com/

Copyright © 2017 Bytellect LLC. All rights reserved. Page 4 of 6

Remember that a library is not an executable. It is meant only for linking into applications

that make use of the library. Your best bet is to get into the habit of using the Build menu

to build your library.

After you have a static library created, applications that want to use this library will need

access to both the .LIB library file and its associated .H header file. There are several ways

to accomplish this, depending on how your project code is organized. The following sections

cover linking to the library (a) if your application project is in the same Visual Studio

solution as your library, and (b) if your application project is in a different solution from

your library.

Linking the Library to an Application (Same Solution)
Let's say you have an application project, MyApplication, that needs to use your library,

and that project is in the same Visual Studio solution as your library. Here is one approach

to deal with this situation.

1. With your solution open so that you can see both your library project and your

application project in Solution Explorer, right-click the application's project name (e.g.,

MyApplication) in Solution Explorer.

2. On the context menu, click Add | References.

3. In the Property Pages window, the left pane should show References selected under

Common Properties. In the right pane, click Add New Reference.

4. In the Add Reference window, you should see your library project listed (e.g.,

MyFirstLibrary). Click to check the box next to your library, and click OK.

5. In the Property Pages window, navigate to Configuration Properties | C/C++ |

General.

6. In the right pane of the Property Pages window, click the down-arrow next to

Additional Include Directories, and click <Edit>.

7. In the Additional Include Directories window, click in the blank area, and click the

ellipsis … button.

8. In the Select Directory window, navigate to the folder (directory) containing your

library's header file. This will typically be up one level from your application's project

folder, and then down one level to your library's project folder.

• For example, if your solution contains two projects, MyApplication and

MyFirstLibrary, you would need to climb out of the MyApplication project folder,

and then climb into the MyFirstLibrary project folder.

9. Once you have chosen the folder that contains your library header file, click Select

Folder.

10. In the Additional Include Directories window, click OK. At this point, you should

see the pathname of the folder added in Additional Include Directories in the

Project Properties right pane.

11. In the Project Properties window, click OK.

Now, in your application project, you can include the library's header file and when you

build your application, it will link automatically to your library.

https://www.bytellect.com/

Copyright © 2017 Bytellect LLC. All rights reserved. Page 5 of 6

Linking the Library to an Application (Different Solution)
Let's say you have an application project that needs to use your library, but that application

project is in a separate Visual Studio solution. Here is one approach to deal with this

situation.

1. Choose a location where you want the .H and .LIB files to reside, so that other projects

can access them. For this discussion, we'll choose C:\MyLibraries. Ensure that this

folder exists. If it doesn't exist, create it.

2. In your library project, add a post-build event, which will copy files into that folder.

a. In Visual Studio, select your library project in Solution Explorer.

b. On the Project menu, click Properties.

c. In the left pane of the Property Pages window, navigate to Configuration

Properties | Build Events | Post-Build Event.

d. In the right pane of the Property Pages window, click the box next to

Command Line, click the down arrow at the right end of the box, and click

Edit.

e. Type the following lines into the Command Line window:

 copy "$(ProjectDir)\XXXXXXXX.h" C:\MyLibraries\

 copy "$(TargetPath)" C:\MyLibraries\

where XXXXXXXX.h is the name of the header file you want to publish for use

with your library. Substitute your own header file name for this, and be sure to

include the .h extension. The first line copies the header file, and the second line

copies the .LIB library file.

3. In the Command Line window, click OK.

4. In the Property Pages window, click OK.

5. Click Build | Rebuild to rebuild the library. After the build completes, you should see

your .LIB file and your .H header file in the C:\MyLibraries folder.

6. Close your library solution.

7. Now, using Visual Studio, create or open the solution containing the application that

wants to link to your library.

8. On the Project menu, click Properties.

9. In the left pane of the Property Pages window, navigate to Configuration

Properties | Linker | Input.

10. In the right pane of the window, you should see an entry named Additional

Dependencies, which contains a long list of .LIB library files. Click that box.

11. At the right end of that box, click the down-arrow and click Edit.

12. In the upper box of the Additional Dependencies window, as shown at the right, type

the full path name of the library file on your computer, including its .LIB file extension.

Then click OK.

13. In the Property Pages window, you should see that the library you just added appears

in the Additional Dependencies box, followed by ;%(AdditionalDependencies).

The entire entry should appear in bold, indicating that you have made a change to this

property.

https://www.bytellect.com/

Copyright © 2017 Bytellect LLC. All rights reserved. Page 6 of 6

14. In the Property Pages window, click OK.

15. When your source code includes the header file associated with the library, specify the

full path name to the header file.

16. Build your application project. The header file should be pulled in at compile time and

the library file should be pulled in at link time.

Note that, depending on a number of factors, libraries may or may not be compatible

between versions of Visual Studio, or between the same versions of Visual Studio if some of

the configuration settings differ.

Bytellect LLC provides professional training and consulting

services, including software training for developers and end

users, both online and onsite. Bytellect also designs and develops

custom software and firmware solutions for our clients. Visit our

web site at www.bytellect.com for more details and contact

information.

https://www.bytellect.com/
https://www.bytellect.com/

