
Copyright © 2017 Bytellect LLC. All rights reserved. Page 1 of 3

Pointers vs
Array Names

In many ways, pointers are

identical to array names. Both

represent addresses of something

in memory. However, there is a

key difference between a pointer

and an array name:

Let's assume we have the following variable definitions:

int a[10] = { 11, 31, 51, 71, 91, 111, 131, 151, 171, 191 };

int b[] = { 63, 64, 65, 66, 67 };

int *p = a; // both p and a now refer to the same place

int *p2 = b; // both p2 and b now refer to the same place

Let’s further assume that the array a is located in memory at address 0x323340 (where the

0x prefix indicates hexadecimal in C), the array b is located in memory at address

0x323368, the variable p is located in memory at address 0x320000, and the variable p2 is

located in memory at address 0x320008. Also, assume that sizeof(int) is 4 bytes in our

environment.

The table below shows a sampling of what is and isn’t possible with pointers and array

names. Notice that pointer arithmetic can be used with either pointers or array names.

A pointer is a variable whose value

(i.e., the address it points to) can change,

but an array name’s value

(i.e. the address it refers to) cannot change.

https://www.bytellect.com/

Copyright © 2017 Bytellect LLC. All rights reserved. Page 2 of 3

Using a Pointer

Using an

Array

Name

Description

Expression

Value

Note

p a address of 1st element of array 0x323340 base/starting address of the array

&p[0] &a[0] address of 1st element of array 0x323340 base/starting address of the array

*p *a contents of 1st element of array 11 1st element of the array

p[0] a[0] contents of 1st element of array 11 1st element of the array

&p[1] &a[1] address of 2nd element of array 0x323344 base address + sizeof(int) * 1

p + 1 a + 1 address of 2nd element of array 0x323344 base address + sizeof(int) * 1

p[1] a[1] contents of 2nd element of array 31 2nd element of the array

&p[2] &a[2] address of 3rd element of array 0x323348 base address + sizeof(int) * 2

p + 2 a + 2 address of 3rd element of array 0x323348 base address + sizeof(int) * 2

p[2] a[2] contents of 3rd element of array 51 3rd element of the array

*(&p[2]) *(&a[2]) contents of 3rd element of array 51

address of 3rd element of the array,

dereferenced to get the data in that

element

*(p + 2) *(a + 2) contents of 3rd element of array 51

address of 3rd element of the array,

dereferenced to get the data in that

element

p = p + 1;

// or...

// p += 1;

// p++;

// ++p;

 address of 2nd element of array 0x323344

Because of pointer arithmetic,

incrementing by 1 adds 4 (the size

of the data pointed to). We can't

change address of an array.

p = b; address of 1st element of b array 0x323368

We can set a pointer variable to

point to the beginning of a

completely different array. We can't

change address of an array.

p = &a[2]; address of 3rd element of a array 0x323348

We can set a pointer variable to

point to any element of an array.

base address + sizeof(int) * 2. We

can't change address of an array.

p = &p2[3]; address of 4th element of b array 0x323374

We can use array indexing with a

pointer variable, as if it were an

array name.

base address + sizeof(int) * 3

p = &p2[3];

p = &p[-1];

address of element just before the

4th element of b array (i.e.,

address of 3rd element of b array)

0x323370

In the 2nd assignment statement, p

starts at the address of the 4th

element of b. We then change p

to point to the element just before

that element (using the -1 index

from the current position of p),

https://www.bytellect.com/

Copyright © 2017 Bytellect LLC. All rights reserved. Page 3 of 3

Using a Pointer

Using an

Array

Name

Description

Expression

Value

Note

which is the 3rd element of b.

1st assignment:

base address + sizeof(int) * 3

2nd assignment:

base address - sizeof(int) * 1

&p address of pointer variable p 0x320000

The location in memory where the

variable p is located. This has

nothing to do with the address that

happens to be stored inside the

variable p (i.e., where p points).

&p2 address of pointer variable p2 0x320008

The location in memory where the

variable p2 is located. This has

nothing to do with the address that

happens to be stored inside the

variable p2 (i.e., where p2 points).

Note that a negative array index can be used with a pointer, as long as it doesn't end up

accessing an element that is outside the bounds of the array (i.e. before the beginning of the

array). If it does, undefined behavior (unpredictable behavior) will occur. The compiler can't

help us if we index beyond either end of the array. It's up to our program logic to make sure

we don't do that.

Bytellect LLC provides professional training and consulting

services, including software training for developers and end

users, both online and onsite. Bytellect also designs and develops

custom software and firmware solutions for our clients. Visit our

web site at www.bytellect.com for more details and contact

information.

https://www.bytellect.com/
https://www.bytellect.com/

