
Copyright © 2017 Bytellect LLC. All rights reserved. Page 1 of 7

Random Numbers in C
The C standard library includes a function

named rand, which returns a random

integer between 0 and RAND_MAX, as

defined in the <stdlib.h> header file. The

rand function is handy for developing

simulations, games, and other

applications that require randomness,

but it is one of the most misunderstood

and often misused functions in the

standard library. Many books, articles,

and speakers have discussed the theory

and practice of random number

generation, some including harsh

criticism of the rand function.

There is nothing technically wrong with the rand function, but it’s important to understand

its behavior and limitations, so we can use it wisely. In this article, I’ll explain what the rand

function provides, and common approaches to gaining control over the randomness we’re

looking for. And, for those of us willing to venture into non-portable code territory, I’ll also

offer a few non-portable options.

Psuedo-Random Acts of Randomness
Successive calls to the rand function actually return what is known as a pseudo-random

sequence. If we call the rand function 100 times in a row within a single run of our program,

we’ll get what appear to be 100 randomly-chosen numbers. However, if we run our program

over again, we’ll get the exact same sequence of 100 numbers. In fact, every time we run the

program, we’ll see the exact same sequence of 100 numbers returned by the 100 calls to rand.

The function uses an algorithm that generates a sequence of values which does its best to

approximate the properties of a truly random sequence. But truly random it clearly is not.

This behavior makes testing our program easier, because we’ll always get the exact same

sequence of numbers. However, this behavior makes guessing games significantly less

challenging for the user; once they figure out the pattern is repeating every time the program

is run, they’ll be able to win every time. And if we’re attempting to program a serious

simulation, having the same sequence of events occur on every run of the program can erode

the credibility of our simulation.

In Search of a Different Random Sequence
How do we make the rand function return something truly random - or at least something

that seems more random? This is where the srand function enters the picture. The srand

function, also declared in <stdlib.h>, lets us specify a seed for the random number generator,

so that later calls to rand will return an oddball random value on the first call, and then what

appears to be other random values after that. Each unique random seed, provided to the

https://www.bytellect.com/

Copyright © 2017 Bytellect LLC. All rights reserved. Page 2 of 7

srand function, essentially kicks off a different sequence of pseudo-random numbers from

rand.

The good news is that a single call to srand at the beginning of the program will affect the

sequence of values returned from all subsequent calls to rand in that program. The bad news

is that, if we pass the exact same value into srand every time we run the program, we’ll get

the same sequence of values out of rand every time we run the program. So, unless we can

somehow pass a different seed into srand every time we run the program, we’re really back

where we started, with the same sequence repeating every time we run the program.

One approach would be to ask the user for some unsigned integer value, have the program use

that number as the seed passed into the srand function, and then continue with the program,

calling rand as needed to get our random numbers. However, if the user always supplies the

same seed to the srand function, they’ll always get the same sequence of values out of

subsequent calls to rand. Again, that approach puts us back where we started. It puts the

burden on the user to select a new seed on each program run, and we know that users will just

tend to fall unto a rut by using the same value on every run (and the same password on every

web site, etc.). Moreover, if our program is not interactive, there is no user interface, and thus

no way for the user to specify the seed. “Ah,” I hear you say, “Have the user put the seed in a

configuration file,” you say. Well, the likelihood of a user changing the configuration file on

every run is, at best, slim to none.

What we need to do is pass some truly random value into the srand function, so that the seed

we’re starting with is truly random, and the sequence of values we get out of rand will be

different every time we run the program.

A Time for Randomness
One popular approach is to grab the current time and use that value as the seed we pass to

srand. The C libraries contain a function named time, declared in <time.h>, which returns

the number of seconds elapsed since midnight, January 1, 1970. Here’s an example of how to

use the time function to seed the random number generator in a single call to srand at the

beginning of the program:

srand((unsigned)time(NULL));

This statement grabs the current internal clock time using the time function, converts (i.e.,

casts) it to an unsigned integer, so that it can be passed into srand, and uses that value as the

seed for the random number generator.

Keep in mind that we only need to call srand once, before our first call to rand, and then use

calls to rand to generate as many pseudo-random numbers as we want. Calling srand with a

new seed will begin a new pseudo-random sequence; calling srand with the same seed with

start the same sequence over again.

One downside to this approach is that the data type returned by the time function, time_t, is

not guaranteed to boil down to an unsigned integer, so a cast to unsigned integer might not

produce a meaningful result. Implementations are free to define the time_t data type in other

https://www.bytellect.com/

Copyright © 2017 Bytellect LLC. All rights reserved. Page 3 of 7

ways. In practice, implementations use unsigned integer as the basis for the data type

returned. In practice, having worked with many different C compilers and libraries over many

years, we have not yet run into any that would fail to do the right thing. But because there are

no guarantees governing how time_t might be implemented, the code above is not truly

portable. Here is a portable alternative that hashes the individual bytes of the time function’s

returned value to generate the seed for srand:

void srandUsingTimeBytes(void)

{

 time_t currentTime = time(NULL);

 unsigned char *pByte = (unsigned char *)¤tTime;

 unsigned seed = 0;

 for (size_t index = 0; index < sizeof(currentTime); index++)

 {

 seed = seed * (UCHAR_MAX + 2U) + pByte[index];

 }

 srand(seed);

}

Controlling the Random Range
The rand function takes no parameters, and returns an integer. The C standards guarantee

that RAND_MAX is at least 32767, but it may be significantly higher than that in a given

compiler implementation. If we need to refer to the largest possible random value returned by

rand, and we want our code to be portable to other environments, use the symbol RAND_MAX

instead of hard-coding the actual number.

Using the above techniques, we can achieve good randomness using a single call to srand at

the beginning of the program. But what if our goal is to have the program select a random

value that is in a range smaller than 0 to RAND_MAX? What if we wanted our program to

select a random value in the range 1 to 10? In this range, there are exactly 10 possible values.

Recall our discussion of the modulo operator (the % operator in an arithmetic expression. It

provides us with the remainder of a division operation. Consider the following expression:

rand() % 10

The value of that expression will be the remainder when the value returned by rand is

divided by 10. If the value returned by rand is divisible by 10, the remainder will be 0. If it is

not divisible by 10, the remainder will be in the range 1 through 9. So, the above expression

actually does narrow the range for us; it narrows the range down to 0 through 9 inclusive. But

we wanted a value in the range 1 through 10. We can easily shift the entire range up by one

by, well, adding one:

(rand() % 10) + 1

The extra parentheses have been added for clarity, but are not required because the modulo

operator has higher precedence than the addition operator. The value inside the parentheses

https://www.bytellect.com/

Copyright © 2017 Bytellect LLC. All rights reserved. Page 4 of 7

will be a number in the range 0 through 9. By adding one to whatever that value is, the whole

expression will have a value in the range 1 through 10. So, a statement that captures this

value into an integer variable might look like:

myRandomValue = (rand() % 10) + 1;

If we need to generate random values in a variety of ranges, we can add the following C

function to our code to provide a more general solution:

int randRange(int minValue, int maxValue)
{
 return ((rand() % (maxValue - minValue + 1)) + minValue);
}

and call it with the range of values we’re interested in:

myRandomValue = randRange(1, 10);

which generates a value in the range 1 through 10.

A more in-depth discussion of the problems with random numbers follows.

Read on, if you're thoroughly fascinated by this subject.

https://www.bytellect.com/

Copyright © 2017 Bytellect LLC. All rights reserved. Page 5 of 7

The Pigeonhole Principle
Unfortunately, this technique almost always skews the distribution of the pseudo-random

sequence, causing some values to be generated much more often than others. Part of the

problem is that many implementations produce very non-random low-order bits, and

remainder approach focuses on the low-order bits. While there are ways to overcome this

problem, they don’t address the second issue – the pigeonhole principle:

Given a set of numbers, if you attempt merge them all into a

smaller number of boxes, unless the number of boxes is evenly

divisible by the range of the original set of numbers, some boxes

will contain more numbers than other boxes. Therefore, the

distribution of numbers in boxes is going to be worse than the

distribution of numbers in the original set.

Ultimately, the only sure way to get a distribution that matches the original rand function is

to call it repeatedly:

int randRange(int minValue, int maxValue)

{

 int randomValue;

 do

 {

 randomValue = rand();

 }

 while ((randomValue < minValue) || (randomValue > maxValue));

 return randomValue;

}

Clearly, the smaller the requested range, the higher the number of potential iterations in the

loop, so performance can suffer significantly.

The Quality of Randomness
The overall quality of a random number generator is affected by the following:

• Range - The rand function generates values in the range 0 to RAND_MAX, which is

guaranteed by the C standard to be at least 32767. Implementations that use this

maximum have a smaller range of values to return than implementations that use 32

or 64 bits.

• Period - The period of rand is left open by the C standard as implementation defined.

Real-world implementations typically have a period of about 2^32. The higher the

period, the less likely we’ll run into a repeating pseudo-random sequence. The period of

https://www.bytellect.com/

Copyright © 2017 Bytellect LLC. All rights reserved. Page 6 of 7

the generator should at least exceed the number of random numbers we’ll request, or

we’ll run into repetition.

• Distribution - The C standard doesn’t require values returned by rand to be evenly

distributed. Values returned by a good generator are expected to be uniformly

distributed. (Think of a good distribution as: “Every value in the range is equally likely

to appear in the next call to the function. No value is more likely to appear than any

other value.” Think of a bad distribution in terms of George Orwell’s Animal Farm,

where “All values are equally likely to occur, but some values are more likely to occur

than others.”)

• Predictability - Some algorithms generate more predictable sequences than others.

The C standard leaves the details up to the C library implementation, and other than stating

a minimum range, none of the above factors is specified. There has been so much discussion

about the quality of random sequences returned by rand, that the C11 standard adds this

disclaimer:

"There are no guarantees as to the quality of the random sequence produced and some

implementations are known to produce sequences with distressingly non-random low-

order bits. Applications with particular requirements should use a generator that is

known to be sufficient for their needs."

[ISO/IEC 9899:2011, 7.22.2.1]

None of the techniques discussed earlier do anything to overcome a low quality

implementation of rand.

Non-Portable Randomness
For some applications where better randomness is required, several non-portable alternatives

have arisen. Most modern operating systems provide mechanisms for generating

cryptographically secure pseudo-random sequences. But there is a price for using these

approaches:

• They are typically significantly slower at generating values than the rand function.

• They are non-portable, because they are not part of the C standard library, and because

they are tied to low-level functions in the operating system, or to intrinsics provided by

the specific compiler implementation.

Hardware-generated random values are also a possibility, but that approach has the

disadvantage of reducing source code portability by tying code to a specific hardware device or

CPU version.

That said, here are a few non-portable alternatives:

• The rand_s function (Windows) - The Windows rand_s function uses a low-level

operating system function, available on Windows XP and later. For more details on this

function, see https://msdn.microsoft.com/en-us/library/sxtz2fa8(v=vs.120).aspx.

https://www.bytellect.com/
https://msdn.microsoft.com/en-us/library/sxtz2fa8(v=vs.120).aspx

Copyright © 2017 Bytellect LLC. All rights reserved. Page 7 of 7

• The CryptGenRandom function (Windows) - The Windows CryptGenRandom

function is another possibility, also available on Windows XP and later. It requires

including <windows.h>, and linking to advapi32.lib. For more details on this function,

see https://msdn.microsoft.com/en-us/library/windows/desktop/aa379942(v=vs.85).aspx.

• The rdrand instruction (Intel only, Ivy Bridge and later) - Since early 2012, Intel

CPUs (Ivy Bridge platform and later) provide the rdrand instruction. It requires

dipping into assembly language, or linking to a library that uses this instruction. For

more details on this CPU instruction, see https://software.intel.com/en-

us/blogs/2011/06/22/find-out-about-intels-new-rdrand-instruction/.

• The /dev/random generator (Unix/Linux derivatives) - This mechanism is

available on most Unix- and Linux-derived operating systems, although the specific

semantics vary across implementations. For a general overview, see

https://en.wikipedia.org/wiki//dev/random.

• The random function (POSIX) - POSIX-compliant libraries include the random

function, which is considered better than most rand implementations because it

guarantees a specific period. For more details, see

http://pubs.opengroup.org/onlinepubs/009695399/functions/initstate.html.

• The ar4random (BSD derivatives) - This function is available in some BSD (Berkley

Software Distribution) derivatives, and is generally considered better than the POSIX

random function. For more details, see

http://www.manpagez.com/man/3/arc4random_uniform/.

Random Conclusion
There is nothing technically wrong with the rand function. It is both portable and useful. But

it’s important to have a clear understanding of what it provides, how to use it effectively, and

what alternatives there are if rand doesn’t meet our needs.

Bytellect LLC provides professional training and consulting

services, including software training for developers and end

users, both online and onsite. Bytellect also designs and develops

custom software and firmware solutions for our clients. Visit our

web site at www.bytellect.com for more details and contact

information.

https://www.bytellect.com/
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379942(v=vs.85).aspx
https://software.intel.com/en-us/blogs/2011/06/22/find-out-about-intels-new-rdrand-instruction/
https://software.intel.com/en-us/blogs/2011/06/22/find-out-about-intels-new-rdrand-instruction/
https://en.wikipedia.org/wiki/dev/random
http://pubs.opengroup.org/onlinepubs/009695399/functions/initstate.html
http://www.manpagez.com/man/3/arc4random_uniform/
https://www.bytellect.com/

