
Copyright © 2017 Bytellect LLC. All rights reserved. Page 1 of 2

Character Escape Sequences
Escape

Sequence

Name

Description
\? Question mark Allows the expression of a literal question mark character.
\\ Backslash Allows the expression of a literal backslash character.
\’ Single quote Allows the expression of a literal single quote character.
\” Double quote Allows the expression of a literal double quote character.
\0 Null Produces the special character whose ASCII code is zero.
\a Alert (or Bell) Produces an audible or visible alert on output devices, without affecting the

position of subsequent output on the device.
\b Backspace Moves the output position to the previous position on the current output line.
\f Form feed Moves the output position to the next page on the output device.
\n New line Moves the output position to the beginning of the next line.
\N Octal constant (N =

octal digits)

Using octal digits (0 1 2 3 4 5 6 7), allows the programmer to specify a character

using the octal representation of its ASCII code.
\xN Hexadecimal

constant

(N = hex digits)

Using hexadecimal digits (0 1 2 3 4 5 6 7 8 9 A B C D E F), allows the programmer

to specify a character using the hexadecimal representation of its ASCII code.

\r Carriage return Moves the output position to the beginning of the current line.
\t Horizontal tab Moves the output position to the next tab stop on the current line.
\v Vertical tab Moves the output position to the beginning of the line at the next vertical tab stop.

Format Conversion Specifiers in printf

Format

Name

Description
%% Percent sign Allows the expression of a literal percent sign character in the output.
%c Character Specifies a single unsigned character, or the exact number of characters specified

by the length modifier.
%d or %i Signed decimal

integer

Specifies an optionally signed decimal integer. Precision specifies the minimum

number of digits to generate. Adding an l (as in %ld or %li) specifies a long

integer. Adding an ll specifies a long long int.
%e or %E Decimal scientific

notation

Specifies a floating point decimal number in scientific notation. The case of the ‘e’

in the format specifier indicates the case of the ‘e’ output in scientific notation.

Precision specifies the number of fraction digits to generate.
%f Decimal floating

point number

Specifies an optionally signed floating point decimal number. Precision specifies

the number of fraction digits to generate. %f is used for float or double, since floats

are promoted to doubles in the variable argument list.
%g or %G Decimal floating

point number

Equivalent to %f or %e, whichever is shorter. The case of the ‘g’ in the format

specifier indicates the case of the ‘e’ in the output, if scientific notation is used.

Precision specifies the maximum number of significant digits to generate.
%n Number of

characters written

Places the number of characters written so far into the integer variable whose

address is specified in the associated argument.
%o Unsigned octal

integer

Specifies an unsigned integer in octal notation. Precision specifies the minimum

number of digits to generate.
%p Pointer Specifies the value of a pointer (a memory address) in hexadecimal notation.
%s Character string Specifies a null-terminated string of characters. Precision specifies the maximum

number of characters to generate from the string.
%u Unsigned decimal

integer

Specifies an unsigned decimal integer. Precision specifies the minimum number of

digits to generate. Adding an l (as in %lu) specifies an unsigned long integer.

Adding an ll specifies an unsigned long long int.
%x or %X Unsigned

hexadecimal

integer

Specifies an unsigned integer in hexadecimal notation. The case of the ‘x’ in the

format specifier indicates the case of the digits A-F in the hexadecimal integer.

Precision specifies the minimum number of digits to generate.

The printf Fact Sheet

https://www.bytellect.com/

Copyright © 2017 Bytellect LLC. All rights reserved. Page 2 of 2

Gaining More Control over Output
Output may be more finely controlled by adding specifiers and modifiers to the conversion specifiers outlined in the

previous table.

● Minimum field-width specifier – The default field width printed is the actual width of the data being

printed. An integer placed between the % and the data type specifier pads the output with spaces or zeros, to

ensure that the output is at least a minimum length. If the output exceeds this length, the full value is output

without any padding, so that no data is hidden. By default, spaces are used for padding. Placing a 0 between

the % and the minimum field-width specifier pads with zeros instead of spaces. For example, “%5d” prints an

integer at least five digits wide, padded on the left with spaces as needed. “%07d” prints an integer at least

seven digits wide, padded on the left with zeros as needed.

● Precision modifier – An integer, placed after a decimal point following the % or the minimum field-width

specifier, provides output control that varies depending on the data type being printed, as follows:

● By default, floating point formats (%f, %e, %E) print six digits after the decimal place. The precision

modifier determines the number of decimal places printed. If it is 0, or a decimal point appears with no

number following it, no decimal point appears in the output.

● For integer and unsigned integer formats, the precision modifier determines the minimum number of

digits printed. Leading zeros are added as needed.

● For %g and %G formats, the precision modifier determines the number of significant digits printed. The

default is six significant digits.

● For %s, the precision modifier indicates the maximum number of characters to be printed.

● Left-justifier – By default, all fields are right-justified. To force a field to be left-justified, place a minus sign

immediately after the % sign. This feature is often useful for printing strings that you want lined up with each

other on the left.

● Short and long modifiers – By default, output of the integer types assume int or unsigned int. Modifiers may

be added to the integer format conversion specifiers (%d, %I, %o, %u, %x, %X) to indicate short, long, and long

long sizes.:

● Adding an h immediately before the format conversion letter prints a short (or unsigned short).

● Adding an l (lowercase L) immediately before the format conversion letter prints a long (or unsigned long).

● Adding an ll (two lowercase Ls) immediately before the format conversion letter prints a long long (or

unsigned long long).

Dynamic Output Control at Run Time
In a situation where you don’t know the minimum field-width or precision at compile time, you can inject them into

your format strings at run time with the following technique.

Using asterisks * as placeholders within the format conversion specifier, you can pass the minimum field-width

specifier and precision modifier to the format string dynamically at run time. To do this, insert an asterisk where

the minimum field-width specifier would go (immediately after the %), and another asterisk where the precision

modifier would go (immediately after the decimal point). Then, pass two additional integer arguments to printf, one

for the minimum field-width specifier and one for the precision modifier. (Indicate left-justification by passing a

negative minimum field-width specifier.) For example, if you want to print the value of double variable x, and you

have two other integer variables minfw and precmod containing the minimum field-width specifier and precision

modifier, then the call to printf would look like this:

printf(“%*.*f\n”, minfw, precmod, x);

In this function call, the value of minfw gets plugged into the first *, the value of precmod gets plugged into the

second *, and x is printed using the resulting %f format. Let’s say minfw is 15 and precmod is 6. Then the above

statement would print x using the format conversion specifier “%15.6f”. So, the equivalent printf call would be:

printf(“%15.6f\n”, x);

All of these features are available in the printf function (print to console output), the fprintf function (print to a

file), and the sprintf function (store output into a string).

https://www.bytellect.com/

